Asymptotics for Constrained Dirichlet Distributions
نویسندگان
چکیده
We derive the asymptotic approximation for the posterior distribution when the data are multinomial and the prior is Dirichlet conditioned on satisfying a finite set of linear equality and inequality constraints so the posterior is also Dirichlet conditioned on satisfying these same constraints. When only equality constraints are imposed, the asymptotic approximation is normal. Otherwise it is normal conditioned on satisfying the inequality constraints. In both cases the posterior is a root-n-consistent estimator of the parameter vector of the multinomial distribution. As an application we consider the constrained Polya posterior which is a non-informative stepwise Bayes posterior for finite population sampling which incorporates prior information involving auxiliary variables. The constrained Polya posterior is a root-n-consistent estimator of the population distribution, hence yields a root-n-consistent estimator of the population mean or any other differentiable function of the vector of population probabilities.
منابع مشابه
Small-Variance Asymptotics for Exponential Family Dirichlet Process Mixture Models
Sampling and variational inference techniques are two standard methods for inference in probabilistic models, but for many problems, neither approach scales effectively to large-scale data. An alternative is to relax the probabilistic model into a non-probabilistic formulation which has a scalable associated algorithm. This can often be fulfilled by performing small-variance asymptotics, i.e., ...
متن کاملHeat Content Asymptotics with Singular Initial Temperature Distributions
We study the heat content asymptotics with either Dirichlet or Robin boundary conditions where the initial temperature exhibits radial blowup near the boundary. We show that there is a complete small-time asymptotic expansion and give explicit geometrical formulas for the first few terms in the expansion.
متن کاملExact Tail Asymptotics of Dirichlet Distributions
Abstract: Let X be a generalised symmetrised Dirichlet random vector inIR, k ≥ 2, and let tn ∈IRk, n ≥ 1 be such that limn→∞ P {X > tn} = 0. In this paper we derive an exact asymptotic expansion of P {X > tn} as n → ∞, assuming that the associated random radius of X has distribution function in the Gumbel max-domain of attraction.
متن کاملIntroducing of Dirichlet process prior in the Nonparametric Bayesian models frame work
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...
متن کامل2 The Dirichlet process , related priors and posterior asymptotics
Here we review the role of the Dirichlet process and related prior distribtions in nonparametric Bayesian inference. We discuss construction and various properties of the Dirichlet process. We then review the asymptotic properties of posterior distributions. Starting with the definition of posterior consistency and examples of inconsistency, we discuss general theorems which lead to consistency...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012